Aug
3
2018
Solar cold room (1)2

How Solar Cells Work

You’ve probably seen calculators with solar cells — devices that never need batteries and in some cases, don’t even have an off button. As long as there’s enough light, they seem to work forever. You may also have seen larger solar panels, perhaps on emergency road signs, call boxes, buoys and even in parking lots to power the lights.

Although these larger panels aren’t as common as solar-powered calculators, they’re out there and not that hard to spot if you know where to look. In fact, photovoltaics — which were once used almost exclusively in space, powering satellites’ electrical systems as far back as 1958 — are being used more and more in less exotic ways. The technology continues to pop up in new devices all the time, from sunglasses to electric vehicle charging stations.

The hope for a “solar revolution” has been floating around for decades — the idea that one day we’ll all use free electricity fro­m the sun. This is a seductive promise, because, on a bright, sunny day, the sun’s rays give off approximately 1,000 watts of energy per square meter of the planet’s surface. If we could collect all of that energy, we could easily power our homes and offices for free.

In this article­, we will examine solar cells to learn how they convert the sun’s energy directly into electricity. In the process, you will learn why we’re getting closer to using the sun’s energy on a daily basis, and why we still have more research to ­do before the process becomes cost-effective.

The solar cells that you see on calculators and satellites are also called photovoltaic (PV) cells, which as the name implies (photo meaning “light” and voltaic meaning “electricity”), convert sunlight directly into electricity. A module is a group of cells connected electrically and packaged into a frame (more commonly known as a solar panel), which can then be grouped into larger solar arrays, like the one operating at Nellis Air Force Base in Nevada.

Photovoltaic cells are made of special materials called semiconductors such as silicon, which is currently used most commonly. Basically, when light strikes the cell, a certain portion of it is absorbed within the semiconductor material. This means that the energy of the absorbed light is transferred to the semiconductor. The energy knocks electrons loose, allowing them to flow freely.

PV cells also all have one or more electric field that acts to force electrons freed by light absorption to flow in a certain direction. This flow of electrons is a current, and by placing metal contacts on the top and bottom of the PV cell, we can draw that current off for external use, say, to power a calculator. This current, together with the cell’s voltage (which is a result of its built-in electric field or fields), defines the power (or wattage) that the solar cell can produce.

That’s the basic process, but there’s really much more to it. On the next page, let’s take a deeper look into one example of a PV cell: the single-crystal silicon cell.

How Silicon Makes a Solar Cell

Silicon has some special chemical properties, especially in its crystalline form. An atom of sili­con has 14 electrons, arranged in three different shells. The first two shells — which hold two and eight electrons respectively — are completely full. The outer shell, however, is only half full with just four electrons. A silicon atom will always look for ways to fill up its last shell and to do this, it will share electrons with four nearby atoms. It’s like each atom holds hands with its neighbors, except that in this case, each atom has four hands joined to four neighbors. That’s what forms the crystalline structure, and that structure turns out to be important to this type of PV cell.

The only problem is that pure crystalline silicon is a poor conductor of electricity because none of its electrons are free to move about, unlike the electrons in more optimum conductors like copper. To address this issue, the silicon in a solar cell has impurities — other atoms purposefully mixed in with the silicon atoms — which changes the way things work a bit. We usually think of impurities as something undesirable, but in this case, our cell wouldn’t work without them. Consider silicon with an atom of phosphorous here and there, maybe one for every million silicon atoms. Phosphorous has five electrons in its outer shell, not four. It still bonds with its silicon neighbor atoms, but in a sense, the phosphorous has one electron that doesn’t have anyone to hold hands with. It doesn’t form part of a bond, but there is a positive proton in the phosphorous nucleus holding it in place.

When energy is added to pure silicon, in the form of heat, for example, it can cause a few electrons to break free of their bonds and leave their atoms. A hole is left behind in each case. These electrons called a free carrier, then wander randomly around the crystalline lattice looking for another hole to fall into and carrying an electrical current. However, there are so few of them in pure silicon, that they aren’t very useful.

But our impure silicon with phosphorous atoms mixed in is a different story. It takes a lot less energy to knock loose one of our “extra” phosphorous electrons because they aren’t tied up in a bond with any neighboring atoms. As a result, most of these electrons to break free, and we have a lot more free carriers than we would have in pure silicon. The process of adding impurities on purpose is called doping, and when doped with phosphorous, the resulting silicon is called N-type (“n” for negative) because of the prevalence of free electrons. N-type doped silicon is a much better conductor than pure silicon.

The other part of a typical solar cell is doped with the element boron, which has only three electrons in its outer shell instead of four, to become P-type silicon. Instead of having free electrons, P-type (“p” for positive) has free openings and carries the opposite (positive) charge.

Anatomy of a Solar Cell

B­efore now, our two separate pieces of silicon were electrically neutral; the interesting part begins when you put them together. That’s because, without an electric field, the cell wouldn’t work; the field forms when the N-type and P-type silicon come into contact. Suddenly, the free electrons on the N side see all the openings on the P side, and there’s a mad rush to fill them. Do all the free electrons fill all the free holes? No. If they did, then the whole arrangement wouldn’t be very useful. However, right at the junction, they do mix and form something of a barrier, making it harder and harder for electrons on the N side to cross over to the P side. Eventually, equilibrium is reached, and we have an electric field separating the two sides.

This electric field acts as a diode, allowing (and even pushing) electrons to flow from the P side to the N side, but not the other way around. It’s like a hill — electrons can easily go down the hill (to the N side), but can’t climb it (to the P side).

When light, in the form of photons, hits our solar cell, its energy breaks apart electron-hole pairs. Each photon with enough energy will normally free exactly one electron, resulting in a free hole as well. If this happens close enough to the electric field, or if a free electron and a free hole happen to wander into its range of influence, the field will send the electron to the N side and the hole to the P side. This causes further disruption of electrical neutrality, and if we provide an external current path, electrons will flow through the path to the P side to unite with holes that the electric field sent there, doing work for us alo­ng the way. The electron flow provides the current, and the cell’s electric field causes a voltage. With both current and voltage, we have power, which is the product of the two.

There are a few more components left before we can really use our cell. Silicon happens to be a very shiny material, which can send photons bouncing away before they’ve done their job, so

an antireflective coating is applied to reduce those losses. The final step is to install something that will protect the cell from the elements — often a glass cover plate. PV modules are generally made by connecting several individual cells together to achieve useful levels of voltage and current and putting them in a sturdy frame complete with positive and negative terminals

 

 

 

TAGS: ice machine; block ice machine; tube ice machine; cube ice machine; ice plant; block ice maker; block ice making machine; fluid ice machine; ice block machine; ice block making machin; ice block making machine; ice making machine; ice tube machine; ice tube maker; pumpable ice machine; slurry ice machine; slush ice machine; tube ice maker; tube ice making machine

Contacts & Support

Focusun Refrigeration Corporation
Room 603, Baohong Center
No. 7755 Zhongchun Rd
Shanghai CHINA
ZipCode: 201100

Tel: +86-21-5108 9946
Fax: +86-21-5227 2259
Email: enquiry@focusun.com

Sales: sales@focusun.com
Marketing: marketing@focusun.com
Press: press@focusun.com

Newsletter: newsletter@focusun.com